

International Northern Sea Route Programme (INSROP)

Central Marine Research & Design Institute, Russia

The Fridtjof Nansen Institute, Norway

Ship & Ocean Foundation, Japan

INSROP WORKING PAPER NO. 8-1995

Title: Oil Product Export from North West Russia

Sub-programme III: Trade and Commercial Shipping Aspects.

Project III.01.3: Development of Oil and Gas Exports in Northern Russia.

By Trond Ragnvald Ramsland, MSc.

Address:

Norwegian School of Economics and Business

Centre for International Economics & Shipping

Helleveien 30, 5053 Bergen, Norway.

Tel: +47 55 959845

Fax: +47 55 959439

Date: 24 January 1995.

Reviewed by:

Nathan Mulherin, Reasearch Physical Scientist, US Army Cold Regions Research & Engineering Laboratory, USA.

What is an INSROP Working Paper and how to handle it:

This publication forms part of a Working Paper series from the International Northern Sea Route Programme - INSROP. This Working Paper has been evaluated by a reviewer and can be circulated for comments both within and outside the INSROP team, as well as be published in parallel by the researching institution. A Working Paper will in some cases be the final documentation of a technical part of a project, and it can also sometimes be published as part of a more comprehensive INSROP Report. For any comments, please contact the authors of this Working Paper.

FOREWORD - INSROP WORKING PAPER

INSROP is a five-year multidisciplinary and multilateral research programme, the main phase of which commenced in June 1993. The three principal cooperating partners are Central Marine Research & Design Institute (CNIIMF), St. Petersburg, Russia; Ship and Ocean Foundation (SOF), Tokyo, Japan; and Fridtjof Nansen Institute (FNI), Lysaker, Norway. The INSROP Secretariat is shared between CNIIMF and FNI and is located at FNI.

INSROP is split into four main projects: 1) Natural Conditions and Ice Navigation; 2) Environmental Factors; 3) Trade and Commercial Shipping Aspects of the NSR; and 4) Political, Legal and Strategic Factors. The aim of INSROP is to build up a knowledge base adequate to provide a foundation for long-term planning and decision-making by state agencies as well as private companies etc., for purposes of promoting rational decisionmaking concerning the use of the Northern Sea Route for transit and regional development.

INSROP is a direct result of the normalization of the international situation and the Murmansk initiatives of the former Soviet Union in 1987, when the readiness of the USSR to open the NSR for international shipping was officially declared. The Murmansk Initiatives enabled the continuation, expansion and intensification of traditional collaboration between the states in the Arctic, including safety and efficiency of shipping. Russia, being the successor state to the USSR, supports the Murmansk Initiatives. The initiatives stimulated contact and cooperation between CNIIMF and FNI in 1988 and resulted in a pilot study of the NSR in 1991. In 1992 SOF entered INSROP as a third partner on an equal basis with CNIIMF and FNI.

The complete series of publications may be obtained from the Fridtjof Nansen Institute.

SPONSORS FOR INSROP

- Sasakawa Foundation/Ship & Ocean Foundation, Japan
- The government of the Russian Federation
- The Norwegian Research Council
- The Norwegian Ministry of Foreign Affairs
- The Norwegian Ministry of Industry and Energy
- The Norwegian Ministry of the Environment
- State Industry and Regional Development Fund, Norway
- Norsk Hydro
- Norwegian Federation of Shipowners
- Fridtjof Nansen Institute
- Kværner a.s.

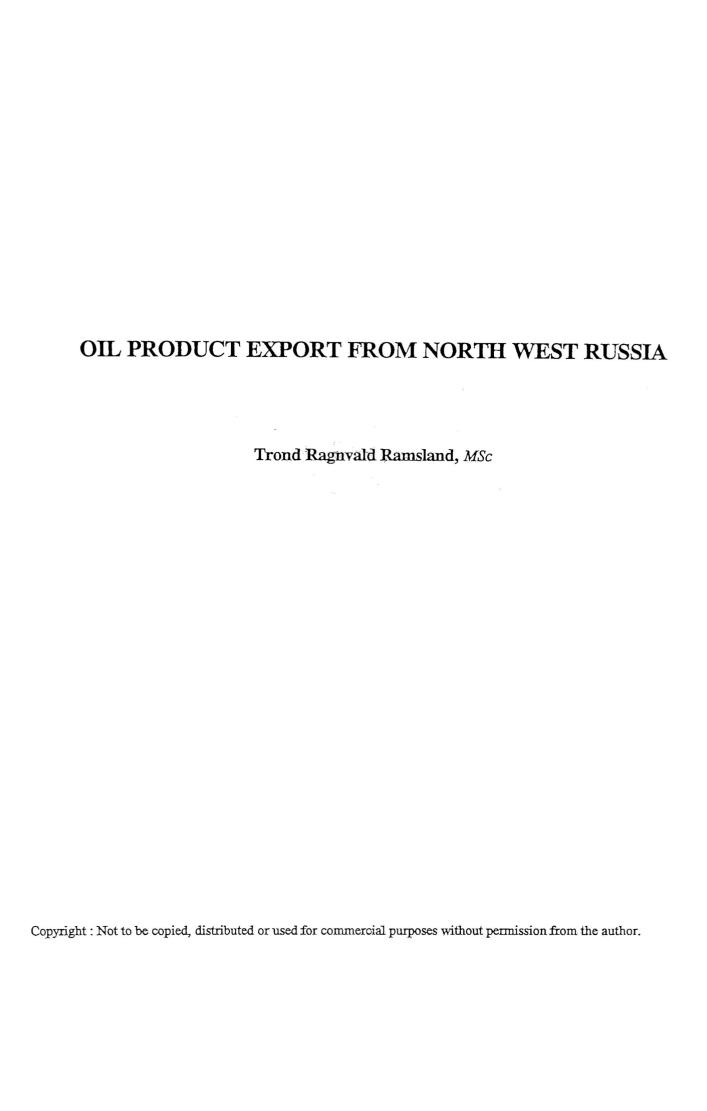
PROFESSIONAL ORGANISATIONS PERMANENTLY ATTACHED TO INSROP

- Ship & Ocean Foundation, Japan
- Central Marine Research & Design Institute, Russia
- Fridtjof Nansen Institute, Norway
- National Institute of Polar Research, Japan
- Ship Research Institute, Japan
- Murmansk Shipping Company, Russia
- Northern Sea Route Administration, Russia
- Arctic & Antarctic Research Institute, Russia
- ARTEC, Norway

- Norwegian Polar Research Institute
- Norwegian School of Economics and Business Administration
- SINTEF NHL (Foundation for Scientific and Industrial Research
 Norwegian Hydrotechnical Laboratory), Norway.

PROGRAMME COORDINATORS

Yuri Ivanov, CNIIMF
 Kavalergardskaya Str.6
 St. Petersburg 193015, Russia
 Tel: 7 812 271 5633
 Fax: 7 812 274 3864
 Telex: 12 14 58 CNIMF SU


• Willy Østreng, FNI P.O. Box 326 N-1324 Lysaker, Norway Tel: 47 67 53 89 12 Fax: 47 67 12 50 47

Telex: 79 965 nanse n E-mail: Elin.Dragland @fni.

wpoffice.telemax.no

 Masaru Sakuma, SOF Senpaku Shinko Building 15-16 Toranomon 1-chome Minato-ku, Tokyo 105, Japan Tel: 81 3 3502 2371

Fax: 81 3 3502 2033 Telex: J 23704

<u>INTRODUCTION</u>	. 2
REFINERY CAPACITY BY REGION	4
DOMESTIC DEMAND FOR DESIDIAL FIRE OF DIRECT	
DOMESTIC DEMAND FOR RESIDUAL FUEL OIL IN THE	
NORTH-WESTERN REGION The Heavy Industry	. 4
The Heavy Industry	5
Power Stations	5
DOMESTIC SUDDI V OF DESIDUAL PURI ON	-ر
DOMESTIC SUPPLY OF RESIDUAL FUEL OIL	5
The Current Observed Picture	5
The Domestic Market for Crude Oil	6
The Domestic Market for Light Products	6
Storage Capacity for Dirty Products	7
Generation of Foreign Exchange Central Government vs. Regional Authorities	7
Central Government vs. Regional Authorities	7
Capacity to meet an export increase	8
RAILWAYS	0
KAIL WAIS	9
THE PORT INFRASTRUCTURE	10
Murmansk	
Kandalaksha	
Archangel	
Kolgujev	14
Noigujev	14
THE NORWEGIAN MARKET FOR RESIDUAL	
FUEL OIL (M 100)	15
THE SHIPPING OPERATION, PORT SELECTION	16
THE SHIPPING OPERATION, FORT SELECTION	10
THE VLCC INVESTMENT	18
<u>CONCLUSION</u>	19
<u>FIGURES</u>	_
Figure 1	2
Figure 2	3
Figure 3	2 3 4 6
Figure 4	6
Figure 5	16
Figure 6	17
TABLES	7
Table 1	7
Table 2	11

APPENDICES

20
22
23
26
27
28
29
31
33
3

INTRODUCTION.

As the refinery process adds significant value to crude oil, oil product export is a prime foreign exchange earnings vehicle for the Russian government. Although crude oil production in the former Soviet Union and Russia is in decline (Figure 1), crude oil and oil products still accounted for 47 % of Russia's export earnings in 1992, or \$6 billion. That was down from \$22 billions in 1986. In terms of quantity, 60 million metric tonnes of crude oil, and 30 million metric tonnes of oil products exported in 1992. Unleaded gasoline and low sulphur diesel fuels represented about 50 % of the oil product export.

The observed upswing in Russian crude oil export in 1992 and in the first half of 1993, is related to a dramatic decline in domestic consumption and during the fall, some refineries refused to take delivery of feedstock due to storage tanks brimming with unsold products. Based on its current proven reserves, Russia's long-term prospects as a gas, crude oil and oil product supplier are excellent given enough capital to exploit the natural resources. To facilitate increased investments in the export oriented industries, 50 % of Russia's foreign debt was rescheduled at the Paris Clubmeeting in May 1993.

Western government creditors agreed upon a grace period of 5 years on interest payments, and on a 10 year extension of maturities. The London Club of western commercial creditors (owed \$35 billion) has yet to decide, but is likely to agree on equally generous treatment. The underlying logic is clear, if the debt is not rescheduled, Russia still cannot pay.

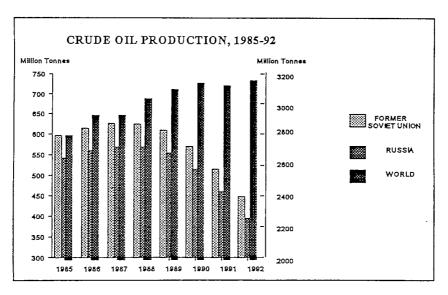


Figure 1

Current regional imbalances in refining capacity and low yield of high grade products per tonnes in the refining process, indicate that Russia in the short to medium term is likely to become net importer of high octane fuels, while simultaneously exporting low grade products and crude oil. This paper thus focuses on the low grade product of residual fuel oil. It will bring overall transport cost down as the number of ballast legs for vessels on timecharter are reduced. The recession in Western Europe has reduced local demand for white oil products, and refineries thus have an incentive to seek new markets.

The ports of Kola and the White Sea area have been chosen as locations for oil products export for a number of reasons. After the break-up of the Soviet Union, Russia retained 90 % of the oil production. However as indicated in the figure below, Russia retained only 43 % of the port through-put capacity for liquid cargoes, in the ports Novorossiysk, Tuapse and Nadhodka. (based on the assumption that the through-put figures are representative for total capacity).

The port charges and handling fees at Tallinn, Ventspils, Liepaja and Klaipeda have increased pressure on the St. Petersburg port. Being in a monopoly position in the Russian Baltic, St. Petersburg port authorities have in turn increased their rates. The exporters of oil products thus face a shortage of port infrastructure for export purposes and increased cost through higher port charges and laytime penalties due to port congestion. The loss of the Baltic ports and Odessa is particularly important as Russia is now deprived of its best ice-free ports further reducing the relative competitive position of Russian oil products.

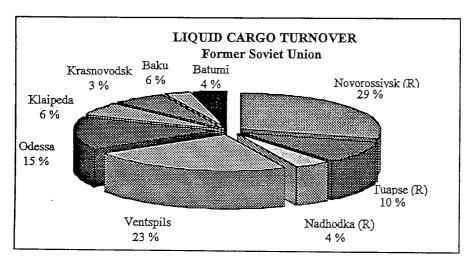


Figure 2

Kotka in Finland has been used to relieve pressure, but both the policy decision by the Russian Parliament which states that seaborne export of oil and oil products shall be from Russian ports and the increase of Finnish tariffs suggest that export should be shifted to the north. It also conforms with the shift in exploration and production to Timan Pechora and Yamal.

Marine Policy & Management, dec 1993

REFINERY CAPACITY BY REGION:

As can be seen from the figure below and Appendix 1, the major concentration of refinery capacity, and thereby residual fuel oil production, is in the Volga-Ural heartland. Combined with the West Siberian refineries it makes up 51 % of total fuel oil supply. The refineries can be classified as both "resource refineries" and "market refineries". "Resource refineries" as the distance to the crude oil production area is relatively short and "market refineries" as they meet the demand of major concentration of consumers in the Volga-Ural region.

The seaside refineries under the North West, Far East and Southern regions however, are best located to serve the function as "Intermediary Refineries", placed between the crude oil producer and the export markets, particularly in Europe and the Far East but also in North America. These refineries also function as "market refineries", as considerable consumer demand exists within the region. This paper focuses on the export potential through the northern ports and correspondingly refineries under the North-Western heading are the prime target.

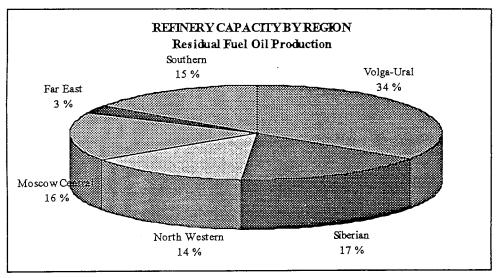


Figure 3

DOMESTIC DEMAND FOR RESIDUAL FUEL OIL IN THE NORTH-WESTERN REGION.

St. Petersburg port and corresponding demand for bunkers is an important demand factor for the residual fuel oil originating at Kirishi refinery, but the major demand for lower grade products as residual fuel oil originates from the heavy industry and power stations. Yaroslav is in an analogous situation, serving the identical users in the Vologda, Yaroslav and Archangel area. It is located on the Northern railway which connects it to the port of Archangel, but has a disadvantage in terms of distance (17 versus 3 hours transit). Although it is beyond the current available data to fully build up the industrial demand function, I will conclude on the probable direction.

The Heavy Industry:

The transformation to a market economy has already led to massive reduction in output from heavy industry. Indications are that this process will rather tend to accelerate than bottom out, and demand will consequently drop. It is important to remember that demand for residual oil in an industrial setting is derived demand for the industrial product itself. Low demand due to a depressed world economy and current world overcapacity of energy-intensive production of aluminium, copper, ferrosilisium and nickel of which Russia is a major producer will, other things equal, lead to a drop in demand for residual oil.

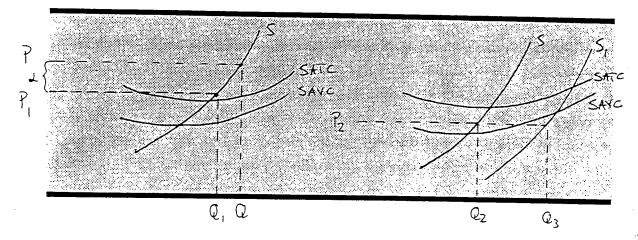
Power Stations:

Residual Fuel Oil used for electricity competes with other forms of primary energy like gas, coal, hydroelectricity and nuclear power. Continuous problems in Russian nuclear power plants with frequent shut downs and strong environmental pressure against capacity increases through newbuildings make increased supply from nuclear power unlikely. Gas is abundant in Russia and its long term propensity of use will increase.

Coal is also abundant in Russia, but large wage increases, frequent strikes, inefficient extraction and conversion to market economy which partly reflects these factors in price increases indicate that the competitive position of coal vs. residual fuel oil will decrease. Coal is also very sensitive to increases in transport cost which is indicated to be 40 % of total cost². Introduction of proper cost accounting principles to regional railways which reflects cost accurately, will likely double railway tariffs for coal. Coal is thus other things equal at a disadvantage versus residual fuel oil.

I thus conclude that demand for residual fuel oil to heavy industry will fall, and that short term demand for residual fuel oil for power generation will increase.

DOMESTIC SUPPLY OF RESIDUAL FUEL OIL.


The Current Observed Picture:

In a perfect competitive industry all refineries are making essentially the same product, for which they are all charging the same price. However, even if all products are homogeneous or identical each refinery might exercise some discretion over the price it charges if buyers have imperfect information about the quality or characteristics of the various oil products. With the exception of the Moscow Commodity Exchange which only partly covers the refinery sector, lack of coherent and timely information on quality and price characterize the market.

The unstable railway tariffs, congestion at seafront and low through-put at oil terminals further distort an efficient pricesetting mechanism. The market for lower grade products products is shown

² Alexey I.Dunin, Chief Foreign Relations, Vorkuta Ugol

in figure 3. In general terms the export market for the individually traded consignment (usually as a shipload) is expressed price mean basis ARA-fob barge Rotterdam as quoted in the daily "Platt's marketscan". For a Russian refinery a normal situation would be a price P at quantity Q, which leaves a margin of alfa to cover transport, brokerage cost and profit.

The current shortage of sea-front capacity and railway/port charge increases originating due to monopoly power in ports and railway administrations, further increase the transport cost portion to a point where price fob refinery will be depressed to p1, at which q1 should be supplied. Production continues below short run average cost (SATC) at Q2, but above short run average variable cost where the refinery faces a shut down decision.

The latest 150 % rate increase at railways and continued congestion at seafront leave a fob refinery price which under normal circumstances should not recover short run average variable cost (SAVC). Still, indications are that supplies of Russian dirty products, in particular M40/M100 fuels used for both further refining and ship fuel, are increasing, and refiners are willing suppliers (Q3) at prices below normal cost recovery. There are a number of factors giving this scenario plausibility.

The Domestic Market for Crude Oil.

The cost of crude oil constitutes more than 85 percent of total refining cost. As crude oil exporters have experienced identical increases in pipeline export tariffs (Transneft/ Rosneftetrans), terminal handling fees (Novorossiysk in particular) and transit fees in Ukraine and the Baltic, the propensity to supply domestic refineries increase vs. export. Consequently a fall in domestic crude oil prices occurs and total refining costs decrease.

The Domestic Market for Light Products.

For a western refinery, a barrel of crude oil will on average yield 49 to 55 percent gasoline, 20 to 24 percent gas oil, 6 percent jet fuel, 6 to 11 percent residual fuel and 3 to 6 percent naphtha. The remainder is asphalt and butane. Thus, a factor 5 to 1 for gasoline vs. residual fuel oil exists. As

mentioned in the introduction, there is strong domestic demand for light products like gasoline and aviation fuel and shortages occur.

A corresponding price increase for gasoline has been observed, and thus increases the ability for gasoline to cross-subsidize export of dirty products at prices below cost recovery. At Russian refineries however, a factor of only 2-3 to 1 (Table 1) exists due to low technoloy. Consequently total gasoline revenue versus low grade products will not be of the same magnitude as if the identical situation existed for a western refinery.

Storage Capacity for Dirty Products.

Low domestic demand, logistic problems at railways, lack of maintenance of existing storage capacity and pumping equipment have caused a build-up of dirty products in storage. The situation for most refineries is now critical as lack of storage facilities and inefficient logistics planning lead to suboptimally through-put. This is an incentive in itself to sell off surplus dirty products at low prices.

Generation of Foreign Exchange.

The current weak Russian economy, and the high foreign debt described in the introduction make the generation of foreign exchange an incentive in itself. That also applies to each individual refinery. Refineries are matched against a pre-set budget and are obliged to generate a given amount of foreign exchange. Refineries which do make an active effort to control logistics and sell products on *fob port*³ terms, can increase profitability as domestic transport cost will be incurred in roubles. Foreign exchange charges do not reflect rouble cost as national companies can negotiate lower rates on railway transport in the rubel economy than foreign companies which must pay premium rates.

Table 1.

	SIAN AGC ercent outpi						
	1975	1980	1985	1990	1991	1992	1995
Motor Gasoline	15.27%	16.51%	14 55%	14 10%	13 37%	12 10%	13 31%
Gasoil	21,79%	23,96%	24,13%	26,27%	24,61%	22,48%	22,75%
Residual Fuel Oil	40,23%	47,43%	42,33%	34,57%	32,09%	30,33%	29,33%

Central Government vs. Regional Authorities.

The latest railway tariff increase is an example of domestic barriers to trade, imposed by the central government in Moscow on regions rich in energy and minerals. A clear correlation between natural resource abundance and demands for greater regional independence can be found. By levying extra

³ Free on Board, accoding to INCO terminology

tariffs on oil products for export the central government forces refineries in Bashkiria, Tataria, Chuvasia and Komi to focus on regional domestic markets.

Upstream crude oil producers will choose to bypass refineries in the autonomous regions to achieve higher prices, and either export through governmentally controlled pipelines, or deliver to refineries close to the coast. The logic behind the action of the central government is to limit the economic base from which independence claims can be sustained and power projected, a policy which may o backfire and increase tension.

For a long term economic perspective however, it makes sense to constrain capacity in the central region to meet regional demand, and use pipeline transportation to the littoral as pipelines are a more cost-efficient mode of transport for large volumes. Refineries at or close to the coast face less logistic problems in an export scenario both in terms of quantity and quality, which focus on maintaining the specific properties of the individual consignment under transport, and time and regularity of shipments. A refinery which is located on the coast can respond quicker to demand and deliver directly to a waiting ship and is likely to have its own storage facilities.

A refinery which is located in the heartland will have a higher variance of transit time to the export ports, and face either higher rental cost for railway wagons, higher port charges for a vessel waiting in port or degrading of quality as the individual consignment must use intermediate storage tanks where the product is mixed with other lots. Additionally, local non-tariff barriers to trade, like delays and paperwork etc. should be less likely to arise, as elements in the logistic chain are under the control of the same regional authority.

All the above-mentioned factors will increase the propensity to export versus domestic consumption of residual fuel oil.

Capacity to meet an export increase:

As can be seen from figure 2 and appendix 1, the major supply of residual fuel oil is from the Volga-Ural region. However, the quantity of 12 million metric tonnes produced in the North-Western region will be sufficient to meet the major part of an increased export demand.

The export department at Kirishi states that an additional 2 Million metric tonnes can be shipped northbound on the October railway subject to adequate rolling stock. The same conclusion holds for Yaroslav-Ukhta supply to Archangel over the Northern railway.

Due to competitive factors and the previously mentioned downstream integration by Volga-Ural located refineries, some of the potential export increase indicated below may originate from the Volga-Ural refineries, though they have a geographical disadvantage.

RAILWAYS⁴:

There are two major railway administrations in the logistic chain. The October railway controls the region around St.Petersburg and stretches northwards through Karelia to Murmansk. The Northern Railway administration is located in Yaroslav and controls the link to Archangel.

Hopefully, the two railways will adapt to the demands that the individual markets generate. The Northern and October railways which handle both passenger and bulkshipments on an extensive scale, must focus on a management structure which centres on engineering and operating functions in order to increase the current volumes of oil product shipments.

The scenario will potentially increase foreign exchange generation which is important for the railways, as they carry burdens from the Soviet past which must be financed. The railway industry, like other industries, provides a number of social services for its employees which extend beyond what is considered normal in the west. Examples thereof are health care, child care, educational services, housing, vacation facilities, food provisions and other services. However, the costs are separately identified in both management and accounting terms by the railways, and should not pose any serious impediments to achieving proper commercial performance.

Positively, the fundamental principle of accountability has been introduced at division-level, which is the principal operating unit of each railway. They are responsible for train operations in their division together with train control, rolling stock and infrastructure maintenance responsibilities and social services. They have full cost and revenue accounting functions, local balance sheets and profit & loss accounts. The increased and predictable generation of foreign exchange transactions could be a significant motive for competition among the October and Northern railways as the two distinct markets develop, and also among the individual divisions the railways mutually.

To further increase incentives one should identify self-interest, and produce strong incentives for critical local work units within divisions to meet their target. Local incentives are likely to be much more powerful than the wider commercial interest of the railway as a whole.

The potential export volumes are set out in Appendix 2. At the October railway an additional volume of 2,05 million metric tonnes can be accommodated for which an adequate seafront infrastructure exists for the total volume. The Northern railway can accommodate an additional volume of 3.75 mmt for which a reasonable, adequate infrastructure potential exists for 2.09 mmt at the seafront in Archangel.

A connecting line from the eastern leg of the Northern Railway at Usinsk to Arkhangel, was started but not finished. As this line would enter on the eastern side of the Dvina river the bridge over the Dvina would not limit the export volumes over Arkhangel.

⁴ Vice Precident, Northern Railway Administration, Archangel

Quality of railway throughput is more difficult to estimate. In the logistic chain, regularity of shipments and low variance of waiting time and handling time at refinery, transit time to port and handling time at seafront terminal are all critical factors. Storage capacity and depth at the seafront terminal are correlated to regularity and predictability on the individual railway shipment. Limited storage capacity at seafront and resticted depth at the terminal (which compels the use of shuttle-tankers) increases the importance of regularity and predictability of the railway transport. Disruptions which lead to prolonged waiting for the export tanker, will cut trading profit on oil products by the daily timecharter equivalent. For a 30,000 dwt product tanker, each 24 hr delay will reduce trading profit by approximately \$ 9-12,000.

The critical phase however, is likely to be the low handling rate when transferring oil products from railwagon to storage. In October, at the time of survey, 300 railwagons were side-tracked at the Kola railway station due to lack of capacity and logistic planning. One should also observe the possibility of market rigging between the two administrations which could easily ruin an otherwise profitable export of oil products.

THE PORT INFRASTRUCTURE:

For most oil exporting countries in the world, the strategy has been to locate refineries at the coast to facilitate export of oil products, and not only crude oil, to generate as much domestic value added to the raw material as possible. In European Russia the pattern differs as the sourcing of crude oil from the distant Tyumen, Western Siberia and Caspian regions and is moved to the central region for refining and consumption. Export constraints thus exist due to the above-mentioned shortage of ports and loss of the Lithuanian "balancing refinery⁵" at Mazheikiai. Residual fuel oil must consequently be shipped out from the heartland by rail and available seafront terminals with adequate rail connection are limited. Export terminals are located in Klaipeda, Ventspils and Tallinn. The Russian state oil major, Lukoil, has integrated downstream and invested in the terminals to have control over its export, the percent stakes not certain.

In the northern region five potential sites have been identified. The major concentration is on the Kola peninsula in the Murmansk area, a converted supply port for the fishing fleet and the naval installations at Severomorsk. Further, a new facility at Kandalaksha at the White Sea is under construction. In Archangel there are two alternative sites; The existing oil terminal, Roskomnefteproduktbas, northwest of the city, and an area at the coal terminal, Levij Bereg, on the west bank of the Dvina River.

⁵ Also called 'intermediate refinery'. Pjlaced between the crude oil producer and the consumers of its oil products. The refinery serves a large area, and can switch between diffrent qualitites. Called 'balancing refinery as it can balance surplus and deficit in various regions.

Murmansk ⁶:

In Murmansk two potential port facilities exist. The old supply port for the fishing fleet which is under the control of a Russian-German joint-venture, "Murman Oil", is located in the bottom of the Kola fjord, south of Murmansk. The current through-put is 750,000 tonn/year of which 350,000 tonnes for export. The facility consists of one shallow draft pier of 150 m length. Storage capacity is 5x4000 tonnes for dirty products and 7x4000 for light products and a shuttle tanker of 5,000 dwt has been acquired due to depth limitations. Pump capacities are 400 tonnes/hr at seafront and 470 tonnes/hr for the shuttle tanker.

As can be seen in Table 2 below, the major constraint is the cargo discharge from railwagons to storage tanks. A standard 60 wagon train will at best be emptied in 27 hrs.

Table 2. CAPACITY CONSTRAINTS "MURMAN OIL"

Railway to Storage	Storage to Seafront	Feeder Vessel
1.152.000 Metric Tonnes	3.456.000 Metric Tonnes	1.825.000 Metric Tonnes

Murman Oil is connected to Artic Service, which acquired a Russian built 150,000 dwt tanker, the "Krivbass" of the "Krym" class, for intermediate storage. The vessel was docked in Hamburg (Blohm & Voss) in 1993 where additional heating coils were installed. Artic Service is a commercial vehicle for the Murmansk regional authorities through the Department of Commercial Affairs. The tanker is located opposite of the Murman Oil terminal (the fishing vessel port) anchored at 32 m depth. It was inspected by a norwegian team and found in good working order, no corrosion in the main tanks and new heating coils.

The government of the autonomous republic Tatarstan represented by "Petra", a Moscow based transport and oil trading company, has integrated downstream to exercise greater control over its oil products logistic chain by investing in the tanker. The autonomous republics of Tataria, Bashkiria, Chuvasia and Perm all face tariff and non-tariff barriers set up by monopoly operators or by the sheer lack of coordination and control. The bureaucracy, delays, laytime penalties and port congestions lead to sub-optimal trade solutions and increased downstream integration should be expected by the refineries located in the Volga-Ural region.

In terms of accessibility and presence of professional western operators, the "Murman Oil" facilities currently offer the best, if not the only potential, for a western investor. However, the transfer operation has not materialized as of January 1995 due to Artic Service being under investigation charged for economic crimes. The tanker is currently under control of the 'Sevzapcombank' of Murmansk, the status of the investment of 'Petra' being uncertain.

⁷ Andrei Filatov, Vice Precident, Petra Trading

⁶ Andrei Kopyov, Director General, Murman Oil

In the Severomorsk area two naval oil bases exist with railway connection. One in Severomorsk connected through the rail-station Vaienga, where the railwagons are parked, and a one-kilometre shuttle track to the storage facilities. No technical specifications are currently available, but can be in future through the Administration of the Northern Naval Fleet. Arctic Shipping Services⁸ operates out of Murmansk area, probably through Sevoromorsk, for transshipments to the Northeastern Siberian settlements. ASS operates two modified "Lunni" class ice-strenghtened 16,000 dwt product tankers, the 'Lunni' and 'Oikku'.

The operation must be seen in light of gaining experience in oil transport in Arctic areas as significant volumes of crude oil will be produced in the Nenets/Timan Pechora region from 1996 and onwards. The potential volume of crude oil export could in an optimistic scenario reach 24 million metric tonnes per year from 2001⁹.

The second naval facility is located 15 km north of Komsomolskaja station which lies between the cities of Murmansk and Severomorsk. The total storage capacity is 200,000 cubic meters, and the port facility can accommodate up to 16,000 dwt tankers. However, the base was closed a few years ago for environmental reasons. The basic structure is promising in terms of storage and berthing, but the size and the scope of the investment to make the base operative are uncertain.

The October railway connects the Kola peninsula with St. Petersburg further south, and the refinery in Kirishi is located on this railway. The refinery at Kirishi currently ships 7,000 tonnes/day northbound on the railway which equals about 2,550,000 tonnes a year. The October railway administration indicates that a yearly volume of 5,000,000 tonnes can be accommodated. The complete structure is set out in Table 1. The obvious bottleneck is the low throughput capacity from railwagon to storage tanks, especially in winter at low temperatures. This further aggregates the problem of available rolling stock where occasional shortages have already appeared.

A second constraint is the railway through Murmansk city which limits the oil products volume which can be delivered by rail to Komsomolskaja and Sevoromorsk to 1,000,000 tonnes. Consequently, no investment appraisal which originates from locations north of Murmansk (Komsomolskaja, Severomorsk) should be made for volumes larger than 1,000,000 tonnes. The current 750,000 tonnes yearly consumption by the Northern Fleet should not be expected to decline further.

⁸ Kværner Masa Yards, Neste Oil, Murmansk Shipping Company, NSR Administration

⁹ Joint Venture, Timan Pechora Company (Norsk Hydro, Amoco, Texaco, Arkhangelgeologia). The export of crude oil from the Timan Pechora region is subject to a separate INSROP Project in 1995.

Kandalaksha¹⁰

Two different infrastructures exist in Kandalaksha. A new facility is under construction where storage capacities are indicated to be 40,000 tonnes oil products. A connected sea front can accommodate 15-20,000 dwt product tankers. Depth at the to main quays is 7,5 m, whereas one pier has increased depth at 9,3 meters by using pontoons. The tidal range is 2 m, so vessels above 8,000 dwt must load the last portion at high tide.

A separate naval installation exists 25 km along the coast from Kandalaksha. Storage capacity was indicated at 20,000 tonnes, of which 10,000 tonnes would be available for commercial purposes. 20,000 dwt vessels were said to be accommodated. However, in order to be allowed use of the base, a 25 km additional railway track must be constructed for user's account, which makes the concept unrealistic as the existing port facilities are being upgraded. However, further use of naval facilities can be discussed with the Administration of the Northern Naval Fleet.

Archangel¹¹:

The oil terminal (Arkhangel Roskomnefteproduktbas) outside Archangel is located to the northeast of the city, and the vessels has to transit up the Dvina river from the White Sea. The channel has been dredged to 11,5 m, and plans exists to dredge it further to 13 m. The base has storage facilities of 220,000 tonnes, of which 40,000 tonnes are earmarked for residual fuel oil, 40,000 tonnes for gasoline and 120,000 tonnes for diesel.

An intermediate storage facility situated between the rail depot, and the main storage tanks is of 40,000 tonnes capacity, but must be upgraded as ground water seeps into the tanks and contaminates/degrades the oil products. Heavy fuel oil cannot be handled in winter due to lack of heating equipment. Heating must be installed to defrost the heavy fuel oil in rail wagons, in the intermediate storage facility, and along the 2 km pipeline to the pier.

The seafront consists of two quays of 120 m length and are separated by a 80 m indentation. can handle 16,000 dwt (9 m draft) vessels which load 10,000 tonnes, transit through the canal to the White Sea and are subsequently filled up by one or two shuttle tanker loads. The terminal currently handles 750,000 tonnes for regional consumption and transit to North East Siberia, and 500,000 tonnes for export. A major constraint is the railway bridge over the Dvina river, which can accommodate an additional 1,000,000 tonnes. Therefore the export potential is limited to 1,500,000 tonnes a year.

The management of the base had an agreement with the joint venture they themselves were part of, Arctic Shipping Services. However, the joint venture now shippes through Murmansk,

¹¹ Jurij Grigorjev, Director General, Arkhangel Commercial Port

¹⁰ Vasilij Ryntsin, Vice Precident, Kandalaksja Port Authorities

roskomnesteproduktbas status in the joint venture uncertain. The vessels 'Ledastern' and 'Elbestern' of Rigel Schiffahrts G.M.B.H in Bremen also participate on the trade. As the season for oil product transport to East Siberia is four months only, it is clear that the Roskomnesteprodukt complex can be developed into a major oil product export operation, although at a geographical and climatic (The White Sea is ice-covered for 5 months) disadvantage versus Murmansk. Lower railway tariffs from Yaroslav compensates partly for this disadvantage.

The ownership structure at the base is unsure, but Wectab¹², which is owned by the Russian-Swede Max Grunfeldt has established a joint venture, BIMS, with the management for purchasing of oil products. They also cooperate with the international oil trading company Vitol.

A second option evaluated is the use of 220 m seafront at the coal terminal, Levij Bereg, on the west bank of the Dvina River. The lack of width, 80m, and current use of the coal facilities leave space for only 19-20 wagons. With defrost/transit time of 8 hrs per 20 wagons, the theoretical capacity (winter defrost) will be 1.090.000 tonnes/year. The river must either be dredged as the current depth is 3-6 m, or the seafront prolonged 30 m into the river where the depth is 8-10m. Significant investments must be made in the facility.

As mentioned above, the railway bridge over the Dvina river is a constraint for the Neftebas. The railway itself however, will be able to increase the yearly volume to 5 million tonnes subject to enough railcars. Consequently a surplus capacity of 1.660.000 tonnes exists on the railway which can be utilized only; if a new railway bridge over Dvina is constructed, or if the available area at the coal terminal is enlarged, or more suitable port areas are found further out on the west bank towards Severodvinsk. Transit time from Yaroslav is 17 hrs, and from Uktha 2,5 days. The railway cost is 500 USD/wagon from Yaroslav and 90 USD/wagon for the empty return leg.

The potential for the Neftebas could have been significantly increased if the new railway-link from the Usinsk-Uktha area were completed, as the track would have arrived at the east side of Dvina and consequently would avoid both crossing the river and the city of Archangel. This work however, has been discontinued.

Kolgujev:

On the island Kolgujev in the Barents Sea, Artikmorneftegasrazvedka of Murmansk extract and export crude oil. The company has license to produce and export 50.000 metric tonnes per year, but the export in 1991 was 44.000 tonnes and in 1992, 38.000 tonnes. Arkhangelgeologia also extract and export from Kolgujev, the license is 100.000 tonnes a year, the actual export was 40.000 tonnes in 1993.

¹² West East Consulting and Trading, based in Gothenburg, Sweden

THE NORWEGIAN MARKET FOR RESIDUAL FUEL OIL (M 100).

I have chosen to match the potential export from the northern ports of Russia to the Norwegian market for residual fuel oil for three reasons;

Firstly the shorter distance will lower the transport cost portion of the traded fuel oil which increases the profit potential.

Secondly the Norwegian market is currently dependent on fuel oil originating from the Antwerp-Rotterdam-Amsterdam (ARA) region and brought in by small lots to Norway, with some originating from Mongstad and Sola refineries. The method of small shipments is expensive, and consequently vessels which calls at ports in the ARA range or elsewhere bunker there. If a separate market for significant volumes exists in Norway, the size of the market can justify infrastructure investments due to lower transport costs. Storage facilities north of Mongstad are being planned, and can handle Russian residual fuel oil.

Thirdly, The ARA range market is much more volatile due to the large quantities and numerous players in the market. By focusing on control of the complete logistic chain, and long-term supply contracts, higher and more stable prices can be achieved. The regularity of shipments out of the Mongstad/Sture range is important in this respect. The time-sensitive ¹³ specialized buoy-loading tankers used in the North Sea have limited options to seek alternative fuel supply, and therefore open the potential for long-term supply contracts.

Long-term arrangements are important as other things equal, the northern ports will be at an internal disadvantage versus the Baltic ports in terms of railway distance and distance to the main market in the ARA range. The port infrastructure in the Baltic is of higher standard (Tallinn, Ventspils, Klaipeida), and not affected by ice to the same degree as Archangel. It is thus important to look at alternative markets to compensate for the disadvantages.

Shown below in table 3 is the aggregate market for residual fuel oil for bunkers use in Norway. The complete calculations are found in Appendix 3. However, some comments must be made to the method used. The distances indicated in Appendix 3 are single voyage. All consumption figures are based on a round-trip voyage, consequently all distances are multiplied by two to arrive at total consumption. It is reasonable to assume that vessels spot chartered for a single voyage would bunker maximum subject to competitive quality and price. As the bunker capacities of the vessels far exceeds the single journey consumption, the figures would then be inflated. For Mo i Rana destinations and ports of origin where not available, and distances are arbitrarily determined to 1000 nm.

¹³ To avoid slowdown of output on the oil fields, the vessels are limited in their trading range, as they must keep their round-trip schedules.

Not included are the traditional cabotage and liner services on the Norwegian coast and the considerable seismic and fishing fleet activity in the North, Norwegian and Barents Seas as most of these vessels run on marine diesel oil (MDO) and not fuel oil. A separate market could arise for diesel, but as previously concluded, the current supply situation does not justify any large infrastructure investments concerning MDO or lighter fuels.

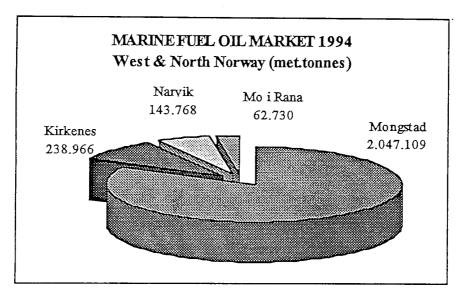


Figure 4

The market for residual fuel oil is estimated to be a total of 2,49 million metric tonnes for bunker purposes. The major demand originates at the Mongstad-Sture area from the export of crude oil and oil products. A major market also exists in Kirkenes and Narvik originating from mineral and iron ore shipments. The proximity to Murmansk and Archangel is important as transport cost will be reduced significantly versus alternative supply from the ARA range.

Therefore we can conclude that a separate market exists in Norway for the potential export supply increase through the northern ports of 2,5 million tonnes. Subject to price and quality, the export increase will generate 137,500,000 USD in total foreign exchange earnings at a fob Murmansk price of 55 USD/tonnes. The shipping operation will be estimated below.

THE SHIPPING OPERATION, PORT SELECTION.

Based on the remarks made under "port infrastructure", two port alternatives, Neftebas in Archangel and the Rybport/"Murman Oil" constellation in Murmansk will be evaluated. The costing for three options has been set out in Appendix 3. A fourth option, the use of a floating terminal moored near Vaienga will be evaluated separately.

Option 1 is the use of Murman Oil facilities, and shipment by a 31150 dwt Finnish built product tanker. Rates have been set at 9000 USD/day which reflect the current market. Other particulars are set out in the appendix. It makes <u>no</u> use of intermediate storage vessel for reasons stated below.

Option 2 is export from Neftebas in Archangel using a "Lunni-class" vessel. Based on inquiries at Murmansk Shipping Company, which is responsible for the operation of Arctic Shipping Service vessels, rates are set at 13000 USD/day indicated to be the absolute minimum to reflect its special purpose ice-going properties. Rates are however 5,000 USD/day above a conventional product tanker of similar size. Arctic Shipping Service is, as previously concluded, likely to use the vessels year round for export purposes.

Option 3 is the use of the "Lunni-class" in shuttle traffic between Archangel and Murmansk, and intermediate storage at the "Krivbass". Rates for storage/handling are indicated to be 5 USD/tonnes, and 1,90 USD/month for storage. Total rate will then be Option 1, as the cargo must be moved on from Murmansk to port of destination, + Option 3, the shuttle operation + USD 6,90 for the storage and handling.

Port of destination will be Mongstad/Sture range for all options in Appendix 4. Costs of shipment to the Mongstad/Sture range and to Rotterdam with identical particulars are shown in Appendix 5a and 5b. The exact USD/tonnes for the two direct routes and the transport cost differentials are set out in matrix form for timecharter rates between USD 8000 and 15000 (USD 500 intervals) for both options.

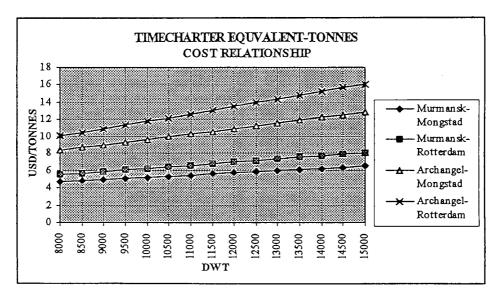


Figure 5

At the given timecharter rates, fuel consumption and port charges, transport cost will be USD per tonnes 4,91 from Murmansk, USD per tonnes 11,57 direct from Archangel and USD per tonnes 16,05 with intermediate storage to the Mongstad/Sture range. Obviously, Murmansk should be preferred on a pure shipment cost basis. Seen in the figure above, economies of scale make Murmansk the better alternative at any which timecharter rate (other things equal) between USD per day 8.000 and 15.000 for the two vessels.

The reader should note that port fees at Murmansk have been set at USD 40,000 and 5,000 at Archangel as adjusted long-term rates. Exact figures for Murmansk, USD 76,000 for a 30,000 dwt vessel are incorporated in the figures in Appendix 4c as the short-term alternative.

Roskomnefteproduktbas in Archangel is affected by the fact, that without purpose-built ice-tonnage the base is useless for almost half the year and consequently local authorities will be under pressure to set low rates. The fact that the terminal is located outside both the city limit and the sphere of Northern Shipping Company also low port charges.

As indicated below the use of intermediate storage raises total shipment cost from Archangel by USD 4,48 per tonnes, but through-put volume at the Roskomnefteproduktbas triples from 564,796 metric tonnes to 1,743,932 metric tonnes, if one single purpose-built "Lunni-class" is used as shuttle-tanker between Archangel and Murmansk. A sensible pricing of transfer fees at the terminal or at the VLCC or both could significantly increase the viability and scale of oil products export.

Lunni-class feeder transport Archangel-Murmansk	\$ 4,24
Storage & Handling in Murmansk	\$ 6,90
Murmansk-Mongstad	\$ 4,91
Sum	\$ 16,05
Direct transport Archangel-Mongstad	· \$ 11,57
Cost increase of intermediate storage	\$ 4,48

THE VLCC INVESTMENT.

The VLCC investment is evaluated in appendix 6a and 6b. The VLCC is assumed located just west of Vaienga in order to facilitate a direct transfer of oil products from wagons to ship. The key limitation is as previously mentioned the railway through Murmansk which limits the volume to 1,000,000 million tonnes. All costs are set to increase by 5 per cent annually, whereas operating income is stable at 6,9 USD per tonnes.

Appendix 6a evaluates the 1,000,000 tonnes/year through-put which would leave an investor with a return on investment of 8,28% (see investment criteria in appendix 6a).

Appendix 6b evaluates a combined use, direct transfer wagon to ship in Murmansk as above, and the use of shuttle transfer from Archangel. The terminal then accommodates an additional volume of 500,000 tonnes in 1995, and 1,500,000 tonnes from 1996 and onwards, which is close to optimal use of one "Lunni-cl" in shuttle service from Archangel to Murmansk.

To attract this extra volume, the transfer fee for the extra volume is set at 2,42 USD per tonnes tonnes, which when added up, equates the direct shipping cost from Archangel to Mongstad/Sture range (see below and appendix 4). However, the export volume for Roskomnefteproduktbas in Archangel is tripled. In this scenario, the return on investment will increase to 27,68%.

Direct transport Archangel-Mongstad	<i>\$11,57</i>
less Lunni-class feeder transport Archangel-Murmansk	\$ 4,24
less Murmansk-Mongstad	\$ 4,91
transfer fee to attract extra through-put cargo	\$ 2,42

CONCLUSION.

As concluded in the introduction, there will be a northbound shift of the strategic centre of the Russian petroleum industry in the decade ahead. The shift will lead to increased infrastructure investments in the exploration & production of crude oil and gas. The focus on, and relative importance of, the energy sector for the region will increase. However, to generate foreign exchange earnings in the short term, oil products, and residual fuel oil offer the best potential.

Domestic demand is falling and will most likely continue its decline. Likewise, current surplus capacity due to overall declining transport volumes on the Northern and October railways allows an additional export of oil products, subject to enough rolling stock. A quantity of 2.090.000 tonnes oil products can be accommodated on the Northern railway, for which infrastructure exists or can be facilitated within a short time span for 1.660.000 tonnes in the Archangel area. On the October railway an additional export increase of 2.050.000 tonnes is possible for which facilities exist or can be modified within a reasonable timeframe.

Lack of control over railway costs, is a major risk factor. As the residual fuel oil supply originates at points necessitating long railway haulage, and is a low value product, the effect of an unforeseen rate hike could make the whole trade unprofitable. Falling world prices affects this further. However, the current lack of storage for residual fuel, the shortfall of traffic

volumes at the railways and the potential foreign exchange revenues it generates for railway administrations should work to the contrary.

Murmansk, due to its ice free fjord and deep water port, offers the best potential for a western operator who wishes to enter into joint ventures or direct investments to solve the problem of heating in wintertime. The use of naval installations could further improve the relative position of Murmansk.

Local authorities and powerful groups have invested USD 9,000,000 in the "Krivbass" tanker, without any through-put deals having yet been struck and management being investigated. The tanker could potentially be obtained at low cost, as it do not earn money for either the bank or the company. Located at the railway pier near Vaienga which facilitates direct transfer of oil products and correctly managed, it could develop into a profitable business.

By pricing transfer services to exporters who use the Yaroslav-Northern railway - Neftebas/Archangel link in an sensible way, volumes can be significantly increased and the profitability of the VLCC investment improved.

In Archangel, the Roskomnefteproduktbas and Arctic Shipping Services were well integrated, with the Kvaerner group through its Finnish subsidiary Kvaerner-Masa and Neste Oil being the key players. However, of reasons unknown, but probably costs, ASS now ship large quatities out of Murmansk. and North-west Russia is still considered as a major growth market.

Due to ice conditions and prohibitive costs of icebreaker support to western tonnage or use of purpose-built ice-strengthened tonnage in the winter-season, entry barrier costs versus risk assessment for direct investments to upgrade heating and transfer facilities in Archangel, will probably be to high for a number of western operators.

The modification cost of 80 million Finnish "Marka" per "Lunni-class" can hardly justify a Timecharter-rate of 13.000 USD/Day for a 17.000 cu.m. vessel, on top of the storage/transfer fees. As mentioned above, a more modest pricing would increase the probability of significant oil products export through the northern ports.

In terms of geographical and political realities Russia has few, if any, short-term possibilities to increase her export of oil products through <u>Russian ports</u>, other than from the northern ports. However, Lukoil's move to integrate vertically downstream in tank facilities in the Baltic ports of Tallinn, Ventspils and Klaipeida points to other solutions being found.

APPENDIX 1

	INDIVIDUAL REF	INERY CAPACITIE	S, 1992.	
REGION	CR OIL CURRENT THROUGH PUT	PERCENT OF	CRUDEOL	RES FUEL OIL
	BARRELS/DAY	TOTAL	TONNES/YEAR	TONNES/YEAR
NORWANTECHNOL		CAPACITY		
NORTH-WESTERN				
Kirishi	386000	60%	19221010	5574093
Yaroslav	357340	58%	17793874	5160224
Ukhta	125700	22%	6259277	1815190
Regional Total			43274161	12549507
Percent of FederationTotal			13,16%	14,34%
MOSCOW-CENTRAL				
Moscow	243000	75%	12100273	3025068
Ryazan	360760	61%	17964175	4491044
Nizhny Novgorod	453060	47 %	22560286	6542483
Regional Total			52624734	14058595
Percent of Federation Total			16,01%	16,06%
VOLGA-URAL				
Novo-Ufa	377640	83 %	18804720	4701180
Ufa	233520	67 %	11628213	2907053
Ufa	250220	84 %	12459795	3114949
Perm	278400	74%	13863029	3465757
Nizhnekamsk	120000		5975443	1732879
Novo-Kuybyshev	307420	58%	15308090	4439346
Syzran	210360	100 %	. 10474952	2618738
Magnitogorsk	246160	118%	12257626	3064407
Orsk	144200	41%	7180491	2082342
Samara	119580	128%	5954529	1488632
Regional Total	·		113906889	29615283
Percent of Federation Total			34,65%	33,83%
SIBERIAN				
Omsk	564000	70%	28084584	7021146
Tomsk	29000	46%	1444065	418779
Achinsk	134040	69 %	6674570	1668643
Angarsk	462960	65 %	23053261	5763315
Regional Total			59256480	14871883

Percent of Federation Total			18,02%	16,99%
FAR EAST	-	-		
Khabarovsk	90000	26%	4481583	1299659
Komsonolsk	116140	28%	5783233	1677138
Regional Total			10264816	2976797
Percent of Federation Total			3,12%	3,40%
SOUTHERN				
Krasnodar	33980	72%	1692046	423012
Groznyi	387720	39 %	19306658	5598931
Novo-Gгоz <u>и</u> уі	. 120000	48 %	5975443	1732879
Groznyi-Sheripov	40000	67 %	1991814	497954
Тнаре	45000	14%	2240791	649829
Volgograd	189920	69 %	9457135	2364284
Saratov	176200	89 %	8773943	2193486
Regional Total			49437831	13460373
Percent of Federation Total			15,04%	15,38%
RUSSIA TOTAL	6602320		328764911	87532438

Source: Oil & Gas Journal Dec 21, 1992

5000000 5000000 5000000 2050000 2950000 Tonnes 400000 1000000 250000 350000 800000 2050000 750000 Metric 2950000 1450000 OCTOBER RAILWAY Surplus Current Shipments: Murman Oil Export Murman Oil Export Potential Increase: City of Murmansk Railroad Capacity Komsomolskaja OIL PRODUCT EXPORT POTENTIAL FROM THE NORTHERN PORTS Domestic Fleet Sevoromorsk Kandalaksha 5000000 5000000 5000000 1250000 2090000 1660000 100000 1000000 650000 500000 1250000 1090000 2090000 NORTHERN RAILWAY Total Current Shipments: West Dvina Export Potential Increase: Railroad Capacity City of Archangel Neftebas Export Neftebas Export APPENDIX 2. Sibir/Nenets Surplus

APPENDIX 3

POTENTIAL DE	POTENTIAL DEMAND FOR RESIDUAL FUEL OIL IN NORWAY (TONNES)	DUAL FUEL	OH INNO	RWAY (TONNE	S)
LOAD PORT	DISCHARGE AREA	DISTANCE (NM)	NO OF VESSELS	CONSUMPTION TONNES/DAY	TOTAL
Kirkenes	ARA	1650	210	120	238966
Narvik	ARA	1218	204	96	135660
Naryik	Immingham	495	30	96	8108
Mo r Rana	Import/Export	1000	15	120	10345
	Import/Export	1000	4	100	2299
	Import/Export	1000	6	80	4138
	Import/Export	1000	76	09	9968
	Import/Export	1000	22	40	5057
	Import/Export	1000	51	30	2586
	Import/Export	1000	26	20	2989
	Import/Export	1000	44	20	5057
	Import/Export	1000	38	15	3276
	Ітроп/Екроп	1000	100	15	8621
	Import/Export	1000	65	15	2086
	Import/Export	1000	75	10	4310
Sunndalsøra	Aughwich	1350	24	15	2793
	ARA	0 <i>6L</i>	52	15	3541

Africa 3650 800 800 800 800 800 800 800 800 800 8		Januaica	5150	9	09	10655
Lingen Fixport 800 Langer 4990 Lis Gmiff 5375 Aughivich 1210 Lis Gmiff 84 Aka 660 Lis Guiff 84 Mongestad 84 ord AkB/C Mongestad Mongestad 84 NRA 600 AkA 520 riad US Guif Cuiff 5275 US East Coast 3470 US East Coast 5270 US Guif 5275		Central Africa	3650	2	09	2517
Langert Lamaicat 4990 nger US Guilf 5375 nger Aughivich 1210 ks Mongestad 84 ord AVB/C Mongestad 84 ord AVB/C Mongestad 820 um ARA 500 um ARA 5275 US Guilf 5275 US Guilf 5275 US East Const 5270 US Guilf 5270 US Guilf 5270 Oulif 5275 Guilf 5270 Guilf 5276 Guilf 5276		Eksport	008	30	15	2069
US Gulf 5375 niger Aughtwich 1210 aks Mongstad 84 dr. A.B.C Mongstad 84 ord/A.B/C Mongstad 100 un ARA 600 un ARA 920 stad Notterdam 582 US Gulf 5275 riad US Gulf US Gulf 5275 US Gulf 5270 US Gulf 5270 US Gulf 5270 US Gulf 5275 US Gulf 5276 US Gulf 5277 US Gulf 5275 US Gulf 5275 US Gulf 5276 US Gulf 5277 Gulf 5275	Ardaltangen	Jamaica	4990	18	09	30972
abs Aughivich 1210 abs Export 660 abs Mongstad 84 ord A/B/C Mongstad 84 ord A/B/C Mongstad 100 un A/RA 600 astad Rotterdam 582 bistad US Gulf 5275 citad US Gulf 5275 bistad US Gulf 520 dulf A/RA 580 US Gulf 5270 5270 US Gulf 5275 5275 US Gulf 5275 5275 <t< td=""><td></td><td>US Gulf</td><td>5375</td><td>4</td><td>40</td><td>4943</td></t<>		US Gulf	5375	4	40	4943
Export 660 Aks Mongstad 84 Ord A.B.C Mongstad 100	layanger	Aughivich	1210	4	20	556
aks Mongstad 84 ord A/B/C Mongstad 100 um ARA 600 um ARA 920 sstad Rotterdam 582 ustad US Gulf 5275 stad US Gulf Arabian 7040 US East Coast 3470 US Gulf Arabian 5270 US Gulf Arabian 5270 US Gulf Arabian 5275 US Gulf Arabian 5275 US Gulf Arabian 5275 US Gulf Arabian 5275			1210	8	15	834
aks Mongstad 84 ord.A.B.C Mongstad 100 un ARA 600 un ARA 920 istad Rotterdam 582 US Gulf 5275 retacl US Gulf 5275 US East Coast 3470 US Gulf 5270 US Gulf 5270 US Gulf 5275 US Gulf 5270 US Gulf 5275 US Gulf 5275 US Gulf 5275		Export	099	96	15	2048
ord A.B./C Mongestad 100 un ARA 600 un ARA 920 stad Rotterdam 582 US Gulf 5275 rtad US Gulf 7040 Gulf ARA 580 US Gulf 5270 US Gulf 5270 US Gulf 5275 Canada 2600	bullfaks	Mongstad	84	175	95	8026
un. ARA 600 un. ARA 920 stad Rotterdam 582 US Gulf 5275 ctad US Gulf 7040 Cus Faset Const 3470 ARA 580 US Gulf 5270 US Gulf 5275 US Gulf 5275 US Gulf 5275 Canada 2600	fatfjord A/B/C	Mongstad	100	215	95	11739
un ARA 920 stad Forterdam 582 8 US Gulf 5275 1 viad US Gulf 7040 US East: Const 3470 ARA 580 5 US Gulf 5270 US Gulf 5275 US Gulf 5275 US Gulf 5275 Ganada 2600		ARA	009	270	120	111724
US Gulf	leidrin	ARA	920	12	. 120	7614
US Gulf-Arabian 7040 US East Coast 3470 ARA 580 5 US Gulf-Arabian 5270 US Gulf 5275 US Gulf 5275 US Gulf 5275 Canada 2600	fongstad	Rotterdam	585	845	95	268506
U.S. Gulf-Arabian 7040 Gulf U.S. East Coast 3470 ARA 580 5 U.S. Gulf-Arabian 5270 U.S. Gulf 5275 U.S. Gulf 5275 Ganada 2600		US Guff	5275	194	140	823385
US East Const 3470 ARA 580 5 US Gulf 5270 US Gulf 5275 Canada 2600	fongstad	US Gulf-Arabian Gulf	7040	9	140	33986
Atribiati	ture	US East Coast	3470	65	120	155552
Arabian 5270 5275 5275 5275 5200 52600		ARA	280	504	140	235200
5275		US Gulf-Arabian Gulf	. 5270	10	140	42402
2600		US Gulf	5275	40	140	169770
		Canada	2600	24	120	43034

OIL PRODUCTS EXPORT FROM NORTH-WESTERN RUSSIA

•	2492572			
	23834	120	36	096
	7289	95	3	4450
	32110	120	12	3880
	12007	120	5	3482

APPENDIX 4 A.

TOMMANDANT FETCO MURMANSK MONGSTAD	7.			"LUNNI" CLASS ARCHANGEL MONGSTAD	GEL MONGSTAD		TUNNIS CLASS ARCHANGEL MURMANSK	NGEL MURMANSK	
Vessel T/C:		0006	74000	Vessel T/C:	13000	0 127111	Vessel T/C:	13000	41167
Speed : 15				Speed : 15			Speed : 14		•
Distance : 1120				Distance: 1400			Distance: 280		•
Roundtrip Days: 8,22				Roundtrip Days: 9,78			Roundtrip Days: 3,17		
MDO/Day : 3	\$/Tonnes	150	3700	MDO/Day : 3	\$/Tonnes	150 4400) MDO/Day : 3	\$/Tonnes 150	1425
MDO/Port : 22	\$/Tonnes	150		MDO/Port : 15	\$/Tonnes	150	MDO/Port : 15	\$/Tonnes 150	
MFO/Day : 34	\$/Tonnes	55	15376	MFO/Day : 35	\$/Tonnes	55 18822	2 MFO/Day : 35	\$/Tonnes 55	9609
\$/Roundtrip Cost :			83000	\$/Roundtrip Cost :		140111	1 \$/Roundtrip Cost :		54167
Port/Pilot/light Load:			40000	Port/Pilot/light Load:		2000	Dort/Pilot/light Load:		2000
Port/Pilot/light Dis:			30000	Port/Pilot/light Dis:		30000	Port/Pilot/light Dis:		2000
Sum Cost :			153000	Sum Cost :		175111	Sum Cost :		64167
Spec. Gravity :		68,0		Spec.Gravity :	0,89	63	Spec. Gravity :	0,89	
Cu. Meter :	3.	35000		Cu, Meter	17000	00	Cu. Meter :	17000	
Tonnes/Roundtrip :	3.	31150		Tonnes/Roundtrip :	15130	01	Tonnes/Roundtrip :	15130	
\$/Tonnes Transported Product:	luct:		4,91	\$/Tonnes Transported Product:	и:	11,57	7 \$/Tonnes Transported Product :	uct :	4,24
Tonnes per Year			1382807	Tonnes per Year		564796	5 Tonnes per Year		1743932

APPENDIX 5 A.

EXPORT FROM NORTH-WEST RUSSIAN PORTS TO MONGSTAD-STURE RANGE

13000 13500 14000 14500 15000		5,97 6,1 6,23 6,36 6,5	6,1 6,23 6,36 2,24 2,11 1,98	6,1 6,23 6,36 2,24 2,11 1,98 2,57 2,43 2,3	6,1 6,23 6,36 2,24 2,11 1,98 2,57 2,43 2,3 2,89 2,76 2,63	6,1 6,23 6,36 2,24 2,11 1,98 2,57 2,43 2,3 2,89 2,76 2,63 3,21 3,08 2,95	6,1 6,23 6,36 2,24 2,11 1,98 2,57 2,43 2,3 2,89 2,76 2,63 3,21 3,08 2,95 3,54 3,4 3,27	6,1 6,23 6,36 2,24 2,11 1,98 2,57 2,43 2,3 2,89 2,76 2,63 3,21 3,08 2,95 3,54 3,4 3,27 3,86 3,73 3,59	6,1 6,23 6,36 2,24 2,11 1,98 2,57 2,43 2,3 2,89 2,76 2,63 3,21 3,08 2,95 3,54 3,4 3,27 4,18 4,05 3,92	6,1 6,23 6,36 2,24 2,11 1,98 2,57 2,43 2,3 2,89 2,76 2,63 3,21 3,08 2,95 3,86 3,73 3,59 4,18 4,05 3,92 4,5 4,37 4,24	6,1 6,23 6,36 2,24 2,11 1,98 2,57 2,43 2,3 2,89 2,76 2,63 3,21 3,08 2,95 3,54 3,4 3,27 4,18 4,05 3,92 4,83 4,7 4,24 4,83 4,7 4,56	6,1 6,23 6,36 2,24 2,11 1,98 2,57 2,43 2,3 2,89 2,76 2,63 3,21 3,08 2,95 3,54 3,4 3,27 4,18 4,05 3,92 4,5 4,37 4,24 4,83 4,7 4,56 5,15 5,02 4,89	6,1 6,23 6,36 2,24 2,11 1,98 2,57 2,43 2,3 2,89 2,76 2,63 3,21 3,08 2,95 3,86 3,73 3,27 4,18 4,05 3,92 4,83 4,7 4,56 5,15 5,02 4,89 5,47 5,34 5,21	6,1 6,23 6,36 2,24 2,11 1,98 2,57 2,43 2,3 2,89 2,76 2,63 3,21 3,08 2,95 3,86 3,73 3,27 4,18 4,05 3,92 4,83 4,7 4,24 4,83 4,7 4,56 5,15 5,02 4,89 5,47 5,34 5,21 5,8 5,67 5,33	6,1 6,23 6,36 2,24 2,11 1,98 2,57 2,43 2,3 2,89 2,76 2,63 3,21 3,08 2,95 3,86 3,73 3,27 4,18 4,05 3,92 4,83 4,7 4,24 4,83 4,7 4,56 5,47 5,34 5,21 5,8 5,67 5,53 6,12 5,99 5,86	6,1 6,23 6,36 2,24 2,11 1,98 2,57 2,43 2,3 2,89 2,76 2,63 3,24 3,4 3,27 4,18 4,05 3,27 4,83 4,7 4,24 4,83 4,7 4,24 5,15 5,02 4,89 5,47 5,34 5,21 5,8 5,67 5,86 6,44 6,31 6,18
2000	5,84 5,97		2,51 2,37	2,51 2,37 2,83 2,7	2,51 2,37 2,83 2,7 3,15 3,02	2,51 2,37 2,83 2,7 3,15 3,02 3,48 3,34	2,51 2,37 2,83 2,7 3,15 3,02 3,48 3,34 3,8 3,67	2,51 2,37 2,83 2,7 3,15 3,02 3,48 3,34 3,8 3,67 4,12 3,99	2,51 2,37 2,83 2,7 3,15 3,02 3,48 3,34 4,12 3,99 4,45 4,31	2,51 2,37 2,83 2,7 3,15 3,02 3,48 3,34 3,8 3,67 4,12 3,99 4,12 3,99 4,77 4,64	2,51 2,37 2,83 2,7 3,15 3,02 3,48 3,34 3,8 3,67 4,12 3,99 4,45 4,31 4,77 4,64 5,09 4,96	2,51 2,37 2,7 3,15 3,02 3,48 3,67 4,12 3,99 4,64 5,09 4,96 5,42 5,28	2,51 2,37 2,83 2,7 3,15 3,02 3,48 3,34 3,8 3,67 4,12 3,99 4,45 4,31 4,77 4,64 5,09 4,96 5,74 5,61	2,51 2,37 2,83 2,7 3,15 3,02 3,48 3,67 4,12 3,99 4,45 4,31 4,77 4,64 5,09 4,96 5,42 5,28 5,74 5,61	2,81 2,37 2,83 2,7 3,15 3,02 3,48 3,34 3,8 3,67 4,12 3,99 4,77 4,64 5,09 4,96 5,42 5,28 5,74 5,61 6,06 5,93	2,51 2,37 2,83 2,7 3,15 3,02 3,48 3,34 4,12 3,99 4,45 4,31 4,77 4,64 5,09 4,96 5,42 5,28 5,74 5,61 6,06 5,93 6,06 6,25
	5,7	2,64		3,09 2,96 2,83	2,96	3,29	2,96 3,29 3,61 3,93	2,96 3,29 3,61 3,61 4,25	2,96 3,29 3,61 3,93 4,25	2,96 3,29 3,61 3,93 4,25 4,58	2,96 3,29 3,61 3,61 4,25 4,25 4,9 4,9	2,96 3,29 3,61 3,61 4,25 4,58 4,9 5,22 5,55	2,96 3,29 3,61 3,61 4,28 4,9 4,9 5,22 5,22 5,87	2,96 3,29 3,61 3,61 4,25 4,58 4,9 5,22 5,22 5,87 6,19	2,96 3,29 3,61 3,61 4,28 4,9 4,9 5,22 5,22 5,25 5,45 6,19 6,19	2,96 3,29 3,61 3,61 4,25 4,28 4,9 6,19 6,19 6,19
	5,44 5,57	2,9 2,77		3,23	3,23	3,23 3,55 3,87	3,23 3,55 3,87 4,2	3,23 3,55 3,87 4,2 4,52	3,23 3,55 3,87 4,2 4,52 4,84	3,23 3,55 3,87 4,2 4,84 4,84 5,16	3,23 3,55 3,87 4,2 4,52 4,84 5,16 5,49	3,23 3,55 3,87 4,2 4,84 5,16 5,49 5,81	3,23 3,87 4,2 4,84 5,16 5,49 5,81 6,13	3,23 3,55 3,87 4,2 4,84 5,16 5,49 5,49 6,13	3,23 3,55 3,87 4,2 4,84 5,16 5,49 5,81 6,13 6,78	3,23 3,87 4,2 4,84 4,84 5,16 5,16 5,81 6,13 6,13
365	5,18 5,31	3,17 3,03		3,49 3,36												
9500 10000	5,04 5	3,3 3	3.62													
886		3,43	3,75	1	4,08											
,	65 4,78	3,56	93,89		34 4,21											
2000	\$/TONNES 4,65	8,34 3,69	8,67 4,02													
T/C RATE	OT/\$	8000	8500		0006	9000	9500	9000 10000	9500 10000 111000	9500 10000 11000 111500	9000 10000 10500 11000 11500	9500 10500 10500 11500 12500	9000 10000 10500 11000 11500 12500 13000	9000 10000 10500 11000 11500 12500 13500	9000 10000 10500 11000 11500 12500 13000 14000	9000 10000 10500 11000 112000 12000 13500 13500 14500

APPENDIX 5 B.

EXPORT FROM NORTH-WEST RUSSIAN PORTS TO ROTTERDAM

		TRANSPC	TRANSPORT COST DIFFERENTIA	PFERENTIAL	\$TONNES	MURMANS	MURMANSK (HOR) YS		ARCHANGEL (VERT	1						
T/C RATE		8000	8500	0006	0056	10000	10500	11000	11500	12000	12500	13000	13500	14000	14500	15000
	\$/TONNES	5,48	19'5	5,85	6,03	6,22	6,4	65,9	6,77	96'9	7,14	7,32	7,51	7,69	7,88	8,06
8000	10,06	4,58	4,39	4,21	4,03	3,84	3,66	3,47	3,29	3,11	2,92	2,74	2,55	2,37	2,18	2
8200	10,49	5,01	4,82	4,64	4,46	4,27	4,09	3,9	3,72	3,54	3,35	3,17	2,98	2,8	2,62	2,43
0006	10,92	5,44	5,26	5,07	4,89	4,7	4,52	4,33	4,15	3,97	3,78	3,6	3,41	3,23	3,05	2,86
9500	11,35	5,87	69'5	5,5	5;32	5,13	4,95	4,77	4,58	4,4	4,21	4,03	3,84	3,66	3,48	3,29
10000	11,78	6,3	6,12	5,93	5,75	5,56	5,38	5,2	5,01	4,83	4,64	4,46	4,28	4,09	3,91	3,72
10500	12,21	6,73	55'9	96'9	6,18	5,99	5,81	5,63	5,44	5,26	5,07	4,89	4,71	4,52	4,34	4,15
11000	12,64	7,16	86'9	6,79	6,61	6,43	6,24	90'9	5,87	5,69	5,5	5,32	5,14	4,95	4,77	4,58
11500	13,07	7,59	7,41	7,22	7,04	6,86	6,67	6,49	6,3	6,12	5,93	5,75	5,57	5,38	5,2	5,01
12000	13,51	8,02	7,84	7,65	7,47	7,29	7,1	6,92	6,73	6,55	6,37	6,18	9	5,81	5,63	5,44
12500	13,94	8,45	8,27	80,8	6,7	7,72	7,53	7,35	7,16	86,9	6,8	19'9	6,43	6,24	90'9	5,88
13000	14,37	8,88	8,7	8,52	8,33	8,15	7,96	7,78	7,59	7,41	7,23	7,04	98'9	6,67	6,49	6,31
13500	14,8	9,31	9,13	8,95	8,76	8,58	8,39	8,21	8,03	7,84	7,66	7,47	7,29	7,1	6,92	6,74
14000	15,23	9,74	9,56	9,38	9,19	9,01	8,82	8,64	8,46	8,27	8,09	6,7	7,72	7,54	7,35	71,17
14500	15,66	10,18	9,99	18'6	6,62	9,44	9,25	6,07	8,89	8,7	8,52	8,33	8,15	7,97	7,78	7,6
15000	16,09	10,61	10,42	10,24	10,05	9,87	9,69	5,6	9,32	9,13	8,95	8,76	8,58	8,4	8,21	8,03

APPENDIX 5 C.

EXPORT FROM MURMANSK TO MONGSTAD/STURE RANGE

		TRANSP	TRANSPORT COST DIFFERENTIA	FFERENTIAL	\$ TONNES	MURMAN	MURMANSK (HOR) VS. ARCHANGEL (VERT)	ARCHAIN	GEL (VER)							
T/C RATE		8000	8500	0006	9500	10000	10500	11000	11500	12000	12500	13000	13500	14000	14500	15000
	\$/TONNES	5,77	6,5	6,04	6,17	6,3	6,43	6,56	6,7	6,83	96'9	7,09	7,22	7,36	7,49	7,62
8000	8,34	2,57	2,44	2,31	2,18	2,04	1,91	1,78	1,65	1,52	1,38	1,25	1,12	66'0	98'0	0,72
8500	8,67	2,89	2,76	2,63	2,5	2,37	2,23	2,1	1,97	1,84	1,71	1,57	1,44	16,1	1,18	1,05
0006	8,99	3,22	3,09	2,95	2,82	2,69	2,56	2,43	2,29	2,16	2,03	1,9	1,77	1,63	1,5	1,37
9500	9,31	3,54	3,41	3,28	3,14	3,01	2,88	2,75	2,62	2,48	2,35	2,22	2,09	1,96	1,82	1,69
10000	9,64	3,86	3,73	3,6	3,47	3,34	3,2	3,07	2,94	2,81	2,68	2,54	2,41	2,28	2,15	2,02
10500	96'6	4,19	4,05	3,92	3,79	3,66	3,53	3,39	3,26	3,13	3	2,87	2,74	2,6	2,47	2,34
11000	10,28	4,51	4,38	4,25	4,11	3,98	3,85	3,72	3,59	3,45	3,32	3,19	3,06	2,93	2,79	2,66
11500	10,6	4,83	4,7	4,57	4,44	4,31	4,17	4,04	3,91	3,78	3,65	3,51	3,38	3,25	3,12	2,99
12000	10,93	5,16	5,02	4,89	4,76	4,63	4,5	4,36	4,23	4,1	3,97	3,84	3,7	3,57	3,44	3,31
12500	11,25	5,48	5,35	5,22	5,08	4,95	4,82	4,69	4,56	4,42	4,29	4,16	4,03	3,9	3,76	3,63
13000	11,57	5,8	5,67	5,54	5,41	5,27	5,14	5,01	4,88	4,75	4,61	4,48	4,35	4,22	4,09	3,95
13500	6,11	6,13	5,99	5,86	5,73	9,8	5,47	5,33	5,2	5,07	ጿ,	4,81	4,67	4,54	4,41	4,28
14000	12,22	6,45	6,32	. 6,18	6,05	5,92	5,79	5,66	5,52	5,39	5,26	5,13	5	4,86	4,73	4,6
14500	12,54	6,77	6,64	6,51	6,38	6,24	6,11	5,98	5,85	5,72	5,58	5,45	5,32	5,19	5,06	4,92
15000	12,87	7,09	6,96	6,83	6,7	6,57	6,44	6,3	6,17	6,04	16'5	5,78	5,64	5,51	5,38	5,25

APPENDIX 6A.

		VLCC CASH	VLCC CASHELOW PROJECTIONS (10000000 TONNESS/VEAR)	TIONS, (1.000	OOO TONNES	/YEAR)				
OPERATING INCOME	0000069	0000069	0000069	0000069	0000069	0000069	0000069	0000069	0000069	7255556
CAPITAL COST										
Principal :	2000000	4500000	4000000	3500000	3000000	2500000	2000000	1500000	1000000	200000
Installment :	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000
Interest	350000	315000	280000	245000	210000	175000	140000	105000	70000	35000
OPERATING COST				,		•				
Crewing	720000	756000	793800	833490	875165	918923	964869	1013112	1063768	1116956
P&I Cover :	200000	525000	551250	578813	607753	638141	670048	703550	738728	775664
Maintenance	300000	315000	330750	347288	364652	382884	402029	422130	443237	465398
Stores/Lub.	200000	210000	220500	231525	243101	255256	268019	281420	295491	310266
Administration	800000	840000	882000	926100	972405	1021025	1072077	1125680	1181964	1241063
Classification			40000		100000	-		40000		
Fuel .	257607	201311	201311	201311	201311	201311	201311	201311	201311	201311
TOTAL COST	3627607	3662311	3799611	3863526	4074387	4092540	4218352	4392204	4494498	4645658
Income Before Tax	3272393	3237689	3100389	3036474	2825613	2807460	2681648	2507796	2405502	2609898
Depreciation	1800000	1440000	1152000	921600	737280	589824	471859	377487	301990	241592
Interest	320000	315000	280000	245000	210000	175000	140000	105000	70000	35000
Loss Carry Forward:		0			····					-
Тал Ваѕе	1472393	1797689	1948389	2114874	2088333	2217636	2209789	2130309	2103512	2368306
Tat (32 %)	471166	575261	623485	09/9/9	668267	709643	707132	681699	673124	757858
Net Income	1001227	1222429	1324905	1438114	1420067	1507992	1502657	1448610	1430388	1610448
Cash Flow	2801227	2662429	2476905	2359714	2157347	2097816	1974516	1826097	1732378	1852040
Break Even Rate	3,63	3,66	3,8	3,86	4,07	4,09	4,22	4,39	4,49	4,65
Handling Charge	6,9	6'9	6'9	6'9	6,9	6,9	6,9	6,9	6'9	6,9

NPV : 8,28% Internal ROR

537390

INVESTMENT CRITERIAS:

Procurement Price: 8.500.000 USD Modification Cost: 500.000 USD

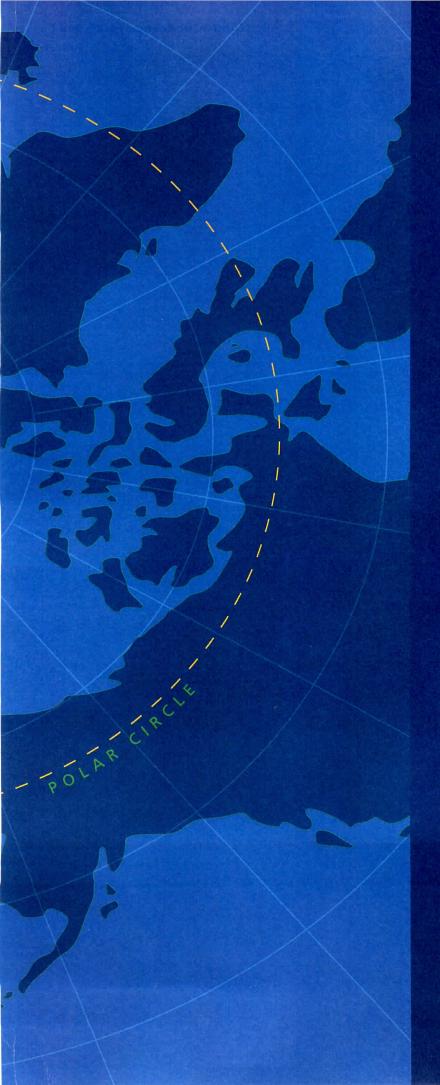
: 4.000.000 USD : 5.000.000 USD

Equity Loan

: 10 Years : 7.0 % (Libor +1,5) Periods Interest

APPENDIX 6B.

		VI CO ODED	WI CO OBED A TION CASHELOW BROTHCHIONS OF SEALONS IN	ZaiOad WOT	TIONIS (2) SOO	VV(1, 0,0)				
		COLO VOIA	THOUSEN	TOW L WOT	700710800	, (1.1.)				
OPERATING INCOME	0000069	8110000	10530000	10530000	10530000	10530000	10530000	10530000	10530000	10530000
CAPITAL COST										
Principal :	2000000	4500000	4000000	3500000	3000000	2500000	2000000	1500000	1000000	200000
Installment	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000
Interest	350000	315000	280000	245000	210000	175000	140000	105000	70000	35000
OPERATING COST				•••				-		
Crewing	720000	126000	793800	833490	875165	918923	964869	1013112	1063768	1116956
P&I Cover	200000	525000	551250	578813	607753	638141	670048	703550	738728	775664
Матігепансе	300000	315000	330750	347288	364652	382884	402029	422130	443237	465398
Stores/Lub .	200000	210000	220500	231525	243101	255256	268019	281420	295491	310266
Administration	800000	840000	882000	926100	972405	1021025	1072077	1125680	1181964	1241063
Classification			40000		100000			40000		
Fuel	257607	301966	503277	503277	503277	503277	503277	503277	503277	503277
TOTAL COST	3627607	3762966	4101577	4165492	4376353	4394506	4520318	4694170	4796465	4947624
Income Before Tax	3272393	4347034	6428423	6364508	6153647	6135494	6009682	5835830	5733535	5582376
Depreciation	1800000	1440000	1152000	921600	737280	589824	471859	377487	301990	241592
Interest	350000	315000	280000	245000	210000	175000	140000	105000	70000	32000
Loss Carry Porward.		0						•		
Tax Base	1472393	2907034	5276423	5442908	5416367	5545670	5537823	5458343	5431546	5340784
Tax (32 %)	471166	930251	1688455	1741731	1733238	1774614	1772103	1746670	1738095	1709051
Net Income	1001227	1976783	3587968	3701178	3683130	3771055	3765720	3711673	3693451	3631733
Cash Flow	2801227	3416783	4739968	4622778	4420410	4360879	4237579	4089160	3995441	3873325
Internal ROR	27,68%		NPV :	12069281						
Break Even Rate	3,63	3,76	4,1	4,17	4,38	4,39	4,52	4,69	4,8	4,95


_		
	6,9	2,4
	6,9	2,4
	6,9	2,4
Contract of the Contract of th	6,9	2,4
	6,9 6,9 6,	2,4
	6,9	2,4
	6,9	2,4
		2,4 2,4
	6,9	
	Handling Charge	Harding Charge

INVESTMENT CRITERIAS:

Procurement Price: 8.500.000 USD Modification Cost: 500.000 USD

: 4.000.000 USD : 5.000.000 USD Equity Loan

: 10 Years : 7.0 % (Libor +3) Periods Interest

The three main cooperating institutions of INSROP

Ship & Ocean Foundation (SOF), Tokyo, Japan.

SOF was established in 1975 as a non-profit organization to advance modernization and rationalization of Japan's shipbuilding and related industries, and to give assistance to non-profit organizations associated with these industries. SOF is provided with operation funds by the Sasakawa Foundation, the world's largest foundation operated with revenue from motorboat racing. An integral part of SOF, the Tsukuba Institute, carries out experimental research into ocean environment protection and ocean development.

Central Marine Research & Design Institute (CNIIMF), St. Petersburg, Russia.

CNIIMF was founded in 1929. The institute's research focus is applied and technological with four main goals: the improvment of merchant fleet efficiency; shipping safety; technical development of the merchant fleet; and design support for future fleet development. CNIIMF was a Russian state institution up to 1993, when it was converted into a stockholding company.

The Fridtjof Nansen Institute (FNI), Lysaker, Norway.

FNI was founded in 1958 and is based at Polhøgda, the home of Fridtjof Nansen, famous Norwegian polar explorer, scientist, humanist and statesman. The institute spesializes in applied social science research, with special focus on international resource and environmental management. In addition to INSROP, the research is organized in six integrated programmes. Typical of FNI research is a multidisciplinary approach, entailing extensive cooperation with other research institutions both at home and abroad. The INSROP Secretariat is located at FNI.